
© Copyright Ian D. Romanick 2009

15-April-2009

VGP352 – Week 2

⇨ Agenda:
­ Render to texture
­ Reflection mapping

­ Review
­ Rendering to a reflection map

­ Improving the reflection model
­ Reflection maps as better lights
­ Fresnel reflections

© Copyright Ian D. Romanick 2009

15-April-2009

Render to Texture

⇨ Several methods exist
­ Render to framebuffer, the copy the result to a texture

­ Use glCopyTexImage2D

­ Render to a pixel buffer (pbuffer), then bind to a
texture

­ Platform dependent (i.e., is different on Linux, Windows, and
Mac OS)

­ Use framebuffer objects to render direct to a texture

© Copyright Ian D. Romanick 2009

15-April-2009

Why render to a texture?

⇨ Many effects can be created by rendering to one
or more textures, then using those textures to
render the final scene

­ Shadow maps
­ Dynamic environment maps
­ Pre-baking procedural textures

© Copyright Ian D. Romanick 2009

15-April-2009

Copy to Texture

⇨ Very easy:
­ Draw to backbuffer
­ Copy resulting image to a texture using either

glCopyTexImage2D or glCopyTexSubImage2D
­ That's it

© Copyright Ian D. Romanick 2009

15-April-2009

Copy to Texture

⇨ Problems:
­ Must perform extra copies – slow
­ Must perform extra buffer clears
­ Window must be at least as large as the largest

desired texture
­ Results can be corrupted if the window is partially

obscured
­ Can't generate a texture when a frame is partially

rendered
­ The back-buffer already has part of the final scene in it!

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ Warning: FBOs have a fairly steep learning
curve

­ The ARB spent over two years developing the
interface

­ It builds on the familiar texture interfaces, but is still
very different

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ Create and bind an FBO
void glGenFramebuffersEXT(GLsizei n,
 GLuint *framebuffers);

void glBindFramebufferEXT(GLenum target,
 GLuint framebuffer);

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
 GLenum attachment, GLenum textarget,
 GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
 GLenum target, GLenum attachment,
 GLenum renderbuffertarget,
 GLuint renderbuffer);

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
 GLenum attachment, GLenum textarget,
 GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
 GLenum target, GLenum attachment,
 GLenum renderbuffertarget,
 GLuint renderbuffer);

Selects how the buffer is used:

­ Color buffer: GL_COLOR_ATTACHMENT0

­ Depth buffer: GL_DEPTH_ATTACHMENT

­ Stencil buffer: GL_STENCIL_ATTACHMENT

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ After making all of the desired attachments:
­ Disable outputs that don't have attachments

­ Use glColorMask or glDisable with GL_DEPTH_TEST or
GL_STENCIL_TEST

­ Make sure the FBO is acceptable by calling
GLenum glCheckFramebufferStatusEXT(
 GLenum target);
­ Some hardware can't handle some combinations of

attachments
­ Some combinations are just wrong

­ Reset the viewport
­ Draw!

© Copyright Ian D. Romanick 2009

15-April-2009

Framebuffer Objects

⇨ Use textures that were rendered to just like usual
­ You cannot render to a texture layer that might be

used for rendering (i.e., no feedback loop)
­ You cannot use GL_GENERATE_MIPMAPS with FBO

rendered textures
 void glGenerateMipmapEXT(GLenum target);

© Copyright Ian D. Romanick 2009

15-April-2009

Renderbuffers vs. Textures

⇨ Two types of buffers can be attached to an FBO:
­ Texture – texturable and renderable
­ Renderbuffer – renderable only

⇨ Why do renderbuffers exist?

© Copyright Ian D. Romanick 2009

15-April-2009

Renderbuffers vs. Textures

⇨ Two types of buffers can be attached to an FBO:
­ Texture – texturable and renderable
­ Renderbuffer – renderable only

⇨ Why do renderbuffers exist?
­ It's the only way to do stencil... a “stencil texture” is a

nonsensical concept
­ Driver may be able to use a better format if the object

won't be texturable
­ Some hardware needs the whole mipmap stack allocated up-

front

© Copyright Ian D. Romanick 2009

15-April-2009

Renderbuffers

⇨ Similar interface to textures:
void glGenRenderbuffersEXT(GLsizei n,
 GLuint *renderbuffers);

void glRenderbufferStorageEXT(GLenum target,
 GLenum internalformat,
 GLsizei width, GLsizei height);

void glDeleteRenderbuffersEXT(GLsizei n,
 const GLuint *renderbuffers);

© Copyright Ian D. Romanick 2009

15-April-2009

Dimensions and Dimensionality

⇨ Dimensions (i.e., height and width) of all
attachments must match

­ This requirement is relaxed in OpenGL 3.0 and
GL_ARB_framebuffer_object

⇨ Dimensionality (i.e., 1D or 2D) of all attachments
must match

­ A 2D “slice” of a 3D texture is attached, so it is treated
as a 2D texture for this purpose

© Copyright Ian D. Romanick 2009

15-April-2009

References

Jones, Rob, "OpenGL Framebuffer Object 101."
http://www.gamedev.net/reference/programming/features/fbo1/

Green, Simon, The OpenGL Framebuffer Object Extension. NVIDIA. 2004.
http://developer.nvidia.com/object/gdc_2005_presentations.html

GL_EXT_framebuffer_object and related extension specifications:

­ http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt

­ http://www.opengl.org/registry/specs/EXT/framebuffer_blit.txt

­ http://www.opengl.org/registry/specs/EXT/framebuffer_multisample.txt

­ http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

http://www.gamedev.net/reference/programming/features/fbo1/
http://developer.nvidia.com/object/gdc_2005_presentations.html
http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_blit.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_multisample.txt
http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

© Copyright Ian D. Romanick 2009

15-April-2009

Break

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping

⇨ Forms of reflection mapping are classified by the
shape used to simulate the environment

­ Cylindrical
­ Hemispherical
­ Spherical
­ Cube
­ Dual-paraboloid

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Cube

⇨ Extend R to intersect
unit cube surrounding
point

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Cube

⇨ Pros:
­ Trivial to implement
­ Easy to render to

reflection map

⇨ Cons:
­ Requires hardware

support
­ More difficult to get

source images
­ Discontinuities at cube-

face boundaries

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Cube

⇨ From the point of view of the reflector:
­ Draw each of the 6 on-axis views to separate faces of

the cube map
­ Be sure to pick a convenient “space” to draw in so

that the reflection map can be used
­ Probably align the axes of the cube map to the world-space

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Paraboloid

⇨ View of environment as reflected by a convex
parabolic mirror

­ The outside of a satellite dish
­ Reflects 180˚ of the environment

­ Capture 360˚ by using two maps
­ Known as dual paraboloid

­ Fairly similar to a hemispherical reflection map

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Paraboloid

⇨ Easily convert reflection vector to 2D texture
coordinate for paraboloid map:

­ d is the view direction vector
­ { 0 0 1 } or { 0 0 -1 } depending on the viewing direction

­ M
n
 is the transformation matrix for normals


s
t
1
1
=A⋅P⋅S⋅M n

T
⋅RT

A=
1
2

0 0
1
2

0
1
2
0
1
2

0 0 1 0
0 0 0 1

 , P=1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

, S=
−1 0 0 dx
0 −1 0 d y
0 0 1 d z
0 0 0 1



© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Paraboloid

Original image from
http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Mapping – Paraboloid

⇨ From view point of reflector:
­ Draw two images
­ Transfrom vertices as usual but:

­ Divide X, Y, and Z by W
­ Call the magnitude of this vector L

­ Normalize and divide X and Y by (Z + 1)
­ Set Z to L remapped to view volume

­ Usual [0, 1] mapping based on near / far

­ Set W to 1.0

© Copyright Ian D. Romanick 2009

15-April-2009

References

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html

Jason Zink. “Dual Paraboloid Mapping in the Vertex Shader.” GameDev.net,
1996. http://www.gamedev.net/reference/articles/article2308.asp

Wolfgang Heidrich and Hans-Peter Seidel. “View-independent environment maps.”
In Proceedings of the SIGGRAPH/Eurographics Worksjhop on Graphics
Hardware, 1998. http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

Michael Ashikhmin and Abhijeet Ghosh. “Simple Blurry Reflections with
Environment Maps.” Journal of Graphics Tools, 7(4): 3-8, 2002.
http://people.ict.usc.edu/~ghosh/papers.html

R. Ramamoorthi and P. Hanraham. “An Efficient Representation for Irradiance
Environment Maps.” In Proceedings of SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, edited by E. Fiume, pp. 497–500,
Reading, MA: Addison-Wesley, 2001.
http://www-graphics.stanford.edu/papers/envmap/

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html
http://www.gamedev.net/reference/articles/article2308.asp
http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf
http://people.ict.usc.edu/~ghosh/papers.html
http://www-graphics.stanford.edu/papers/envmap/

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ Just like reflection mapping:
­ Render the “light” into the reflection map
­ The part of the reflection map that isn't the light is

black
­ Can put multiple lights in one reflection map

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ What is the limitation of this simple approach?

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ What is the limitation of this simple approach?
­ Really only works for perfectly mirror-like surfaces

­ Surfaces where the specular exponent approaches 

­ Essentially creates an aliasing problem
­ Only one sample is taken from the environment

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ If under-sampling is the problem, how can we fix
it?

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ If under-sampling is the problem, how can we fix
it?

­ Obvious answer: take more samples
­ Filter the samples together

­ The lighting equation supplies the sample weights

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ What is the problem with this technique?

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ What is the problem with this technique?
­ Taking enough samples to get good results is slow
­ Taking few enough samples to be fast gives poor

results

⇨ Remind you of anything?
­ And what was the solution there?

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ Just like texture minification!
­ The answer there was to create pre-filtered versions

of the texture called mipmaps

⇨ Create new reflection maps:
­ Each texel in the new map is created from all of the

texels in the old map filtered using weights from the
lighting equation

­ This is expensive, but it only has to be done once...
and that can be off-line

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ Notes / caveats:
­ The new reflection map only includes the specular

component
­ Must be generated with a constant V, so the resulting

reflection map is view-dependent
­ Can create a second map for diffuse lighting

­ Use the diffuse lighting equation
­ Use the surface normal instead of the reflection vector
­ This type of reflection map is called an irradiance map

© Copyright Ian D. Romanick 2009

15-April-2009

Fresnel Reflection

⇨ Named after French physicist Augustin-Jean
Fresnel

­ It's French... It's pronounced fray-NELL

⇨ Light moves at different speeds through different
materials

­ The ratio of the speed of light in a vacuum to the
speed in a particular material is the refractive index of
that material

­ Glass has an index of refraction of ~1.5

© Copyright Ian D. Romanick 2009

15-April-2009

Fresnel Reflection

⇨ When light passes between material with differ-
ing indicies of refraction:

­ The light changes velocity
­ Speed changes
­ Direction changes
­ Wave theory of light: the change in speed causes the change

in direction

­ Some of the light is reflected
­ The remaining light is refracted

­ This light passes into the material

© Copyright Ian D. Romanick 2009

15-April-2009

Wave Theory – Refraction

⇨ When light leaves one material and enters
another, it changes direction

­ At the interface the speed changes, and the light
bends

N

L

R

Q

Air Water

© Copyright Ian D. Romanick 2009

15-April-2009

Wave Theory – Refraction

Image from http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection vs. Refraction

⇨ Ratio of reflection to refraction depends on the
angle between the light and the normal at the
interface

­ The larger the angle between the normal and the light,
the more light is reflected

­ The effect is like a rock skipping on water
­ The greater the angle between the rock's velocity and the

water's surface normal, the more skipping

© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Math

⇨ The amount of reflection R() is:

­ n
i
 is the refractive index of the first material

­ n
t
 is the refractive index of the second material

­  is the angle between the surface normal and the
light vector

c=ni /nt cos

g=1c2−ni /nt 
2

R =
1
2  g−cgc 

2

1 c gc−ni /nt
2

c g−cni /nt
2 
2



© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Math

⇨ Yewouch! That math is complex and expensive
⇨ A good approximation exists:

­ R(0) is calculated in the application and passed into
the shader as a uniform

Ra =R 01−R 0 1−cos 
5

© Copyright Ian D. Romanick 2009

15-April-2009

Fresnel Reflection in Lighting

⇨ Simulate a diffuse surface with a shinny coating:

­ The Fresnel term determines what part of the light is
reflected by the specular coating

­ The light that isn't reflected by the specular coating is
reflected by the diffuse layer

K=1−F KdF K s

© Copyright Ian D. Romanick 2009

15-April-2009

Fresnel Reflection and Materials

⇨ Dielectric materials exhibit a strong Fresnel
factor

­ Dielectric means that it does not conduct electricity
­ Plastic, glass, automotive paint, etc. are dielectic and

have strong Fresnel factors
­ Metal is a conductor and has almost no Fresnel factor

­ This fact will be very important later...

© Copyright Ian D. Romanick 2009

15-April-2009

References

Wloka, Matthias, Fresnel Reflection. NVIDIA. July 2002.
http://developer.nvidia.com/object/fresnel_wp.html

Westin, Stephen. “Fresnel Reflectance.” September 2007.
http://www.graphics.cornell.edu/~westin/misc/fresnel.html

“Reflection and Refraction of Light (Fresnel Formulas).”
http://physics-animations.com/Physics/English/rays_txt.htm

http://en.wikipedia.org/wiki/Fresnel_equations

http://developer.nvidia.com/object/fresnel_wp.html
http://www.graphics.cornell.edu/~westin/misc/fresnel.html
http://physics-animations.com/Physics/English/rays_txt.htm
http://en.wikipedia.org/wiki/Fresnel_equations

© Copyright Ian D. Romanick 2009

15-April-2009

Reading for Next Week

Cook, Robert L. and Torrance, Kenneth E., "A Reflectance Model for
Computer Graphics." In SIGGRAPH ’81: Proceedings of the 8th Annual
Conference on Computer Graphics and Interactive Techniques, pages
307–316. ACM, 1981.
http://graphics.pixar.com/library/ReflectanceModel/

http://graphics.pixar.com/library/ReflectanceModel/

© Copyright Ian D. Romanick 2009

15-April-2009

Next week...

⇨ Quiz #1
⇨ Assignment #1 due
⇨ BRDFs, part 1
­ Common ideas and terminology
­ Cook-Torrance BRDF
­ Micro-facet based BRDFs

© Copyright Ian D. Romanick 2009

15-April-2009

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

