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VGP352 – Week 2

⇨ Agenda:
­ Render to texture
­ Reflection mapping

­ Review
­ Rendering to a reflection map

­ Improving the reflection model
­ Reflection maps as better lights
­ Fresnel reflections
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Render to Texture

⇨ Several methods exist
­ Render to framebuffer, the copy the result to a texture

­ Use glCopyTexImage2D

­ Render to a pixel buffer (pbuffer), then bind to a 
texture

­ Platform dependent (i.e., is different on Linux, Windows, and 
Mac OS)

­ Use framebuffer objects to render direct to a texture
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Why render to a texture?

⇨ Many effects can be created by rendering to one 
or more textures, then using those textures to 
render the final scene

­ Shadow maps
­ Dynamic environment maps
­ Pre-baking procedural textures
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Copy to Texture

⇨ Very easy:
­ Draw to backbuffer
­ Copy resulting image to a texture using either 

glCopyTexImage2D or glCopyTexSubImage2D
­ That's it
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Copy to Texture

⇨ Problems:
­ Must perform extra copies – slow
­ Must perform extra buffer clears
­ Window must be at least as large as the largest 

desired texture
­ Results can be corrupted if the window is partially 

obscured
­ Can't generate a texture when a frame is partially 

rendered
­ The back-buffer already has part of the final scene in it!
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Framebuffer Objects

⇨ Warning: FBOs have a fairly steep learning 
curve

­ The ARB spent over two years developing the 
interface

­ It builds on the familiar texture interfaces, but is still 
very different
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Framebuffer Objects

⇨ Create and bind an FBO
void glGenFramebuffersEXT(GLsizei n,
    GLuint *framebuffers);

void glBindFramebufferEXT(GLenum target,
    GLuint framebuffer);
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Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
    GLenum attachment, GLenum textarget,
    GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
    GLenum target, GLenum attachment,
    GLenum renderbuffertarget,
    GLuint renderbuffer);
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Framebuffer Objects

⇨ Attach one or more renderable objects to it
­ 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
    GLenum attachment, GLenum textarget,
    GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
    GLenum target, GLenum attachment,
    GLenum renderbuffertarget,
    GLuint renderbuffer);

Selects how the buffer is used:

­ Color buffer: GL_COLOR_ATTACHMENT0

­ Depth buffer: GL_DEPTH_ATTACHMENT

­ Stencil buffer: GL_STENCIL_ATTACHMENT
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Framebuffer Objects

⇨ After making all of the desired attachments:
­ Disable outputs that don't have attachments

­ Use glColorMask or glDisable with GL_DEPTH_TEST or 
GL_STENCIL_TEST

­ Make sure the FBO is acceptable by calling
GLenum glCheckFramebufferStatusEXT(
    GLenum target);
­ Some hardware can't handle some combinations of 

attachments
­ Some combinations are just wrong

­ Reset the viewport
­ Draw!
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Framebuffer Objects

⇨ Use textures that were rendered to just like usual
­ You cannot render to a texture layer that might be 

used for rendering (i.e., no feedback loop)
­ You cannot use GL_GENERATE_MIPMAPS with FBO 

rendered textures
 void glGenerateMipmapEXT(GLenum target);
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Renderbuffers vs. Textures

⇨ Two types of buffers can be attached to an FBO:
­ Texture – texturable and renderable
­ Renderbuffer – renderable only

⇨ Why do renderbuffers exist?
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Renderbuffers vs. Textures

⇨ Two types of buffers can be attached to an FBO:
­ Texture – texturable and renderable
­ Renderbuffer – renderable only

⇨ Why do renderbuffers exist?
­ It's the only way to do stencil... a “stencil texture” is a 

nonsensical concept
­ Driver may be able to use a better format if the object 

won't be texturable
­ Some hardware needs the whole mipmap stack allocated up-

front
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Renderbuffers

⇨ Similar interface to textures:
void glGenRenderbuffersEXT(GLsizei n,
    GLuint *renderbuffers);

void glRenderbufferStorageEXT(GLenum target,
    GLenum internalformat,
    GLsizei width, GLsizei height);

void glDeleteRenderbuffersEXT(GLsizei n,
    const GLuint *renderbuffers);
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Dimensions and Dimensionality

⇨ Dimensions (i.e., height and width) of all 
attachments must match

­ This requirement is relaxed in OpenGL 3.0 and 
GL_ARB_framebuffer_object

⇨ Dimensionality (i.e., 1D or 2D) of all attachments 
must match

­ A 2D “slice” of a 3D texture is attached, so it is treated 
as a 2D texture for this purpose
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Break
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Reflection Mapping

⇨ Forms of reflection mapping are classified by the 
shape used to simulate the environment

­ Cylindrical
­ Hemispherical
­ Spherical
­ Cube
­ Dual-paraboloid
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Reflection Mapping – Cube

⇨ Extend R to intersect 
unit cube surrounding 
point
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Reflection Mapping – Cube

⇨ Pros:
­ Trivial to implement
­ Easy to render to 

reflection map

⇨ Cons:
­ Requires hardware 

support
­ More difficult to get 

source images
­ Discontinuities at cube-

face boundaries
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Reflection Mapping – Cube

⇨ From the point of view of the reflector:
­ Draw each of the 6 on-axis views to separate faces of 

the cube map
­ Be sure to pick a convenient “space” to draw in so 

that the reflection map can be used
­ Probably align the axes of the cube map to the world-space
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Reflection Mapping – Paraboloid

⇨ View of environment as reflected by a convex 
parabolic mirror

­ The outside of a satellite dish
­ Reflects 180˚ of the environment

­ Capture 360˚ by using two maps
­ Known as dual paraboloid

­ Fairly similar to a hemispherical reflection map
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Reflection Mapping – Paraboloid

⇨ Easily convert reflection vector to 2D texture 
coordinate for paraboloid map:

­ d is the view direction vector
­  { 0 0 1 } or { 0 0 -1 } depending on the viewing direction

­ M
n
 is the transformation matrix for normals


s
t
1
1
=A⋅P⋅S⋅M n

T
⋅RT

A=
1
2

0 0
1
2

0
1
2
0
1
2

0 0 1 0
0 0 0 1

 , P=1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

, S=
−1 0 0 dx
0 −1 0 d y
0 0 1 d z
0 0 0 1


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Reflection Mapping – Paraboloid

Original image from 
http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html
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Reflection Mapping – Paraboloid

⇨ From view point of reflector:
­ Draw two images
­ Transfrom vertices as usual but:

­ Divide X, Y, and Z by W
­ Call the magnitude of this vector L

­ Normalize and divide X and Y by (Z + 1)
­ Set Z to L remapped to view volume

­ Usual [0, 1] mapping based on near / far

­ Set W to 1.0
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Reflection Maps as Lights

⇨ Just like reflection mapping:
­ Render the “light” into the reflection map
­ The part of the reflection map that isn't the light is 

black
­ Can put multiple lights in one reflection map
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Reflection Maps as Lights

⇨ What is the limitation of this simple approach?



© Copyright Ian D. Romanick 2009

15-April-2009

Reflection Maps as Lights

⇨ What is the limitation of this simple approach?
­ Really only works for perfectly mirror-like surfaces

­ Surfaces where the specular exponent approaches 

­ Essentially creates an aliasing problem
­ Only one sample is taken from the environment
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Reflection Maps as Lights

⇨ If under-sampling is the problem, how can we fix 
it?
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Reflection Maps as Lights

⇨ If under-sampling is the problem, how can we fix 
it?

­ Obvious answer: take more samples
­ Filter the samples together

­ The lighting equation supplies the sample weights
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Reflection Maps as Lights

⇨ What is the problem with this technique?
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Reflection Maps as Lights

⇨ What is the problem with this technique?
­ Taking enough samples to get good results is slow
­ Taking few enough samples to be fast gives poor 

results

⇨ Remind you of anything?
­ And what was the solution there?
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Reflection Maps as Lights

⇨ Just like texture minification!
­ The answer there was to create pre-filtered versions 

of the texture called mipmaps

⇨ Create new reflection maps:
­ Each texel in the new map is created from all of the 

texels in the old map filtered using weights from the 
lighting equation

­ This is expensive, but it only has to be done once... 
and that can be off-line
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Reflection Maps as Lights

⇨ Notes / caveats:
­ The new reflection map only includes the specular 

component
­ Must be generated with a constant V, so the resulting 

reflection map is view-dependent
­ Can create a second map for diffuse lighting

­ Use the diffuse lighting equation
­ Use the surface normal instead of the reflection vector
­ This type of reflection map is called an irradiance map
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Fresnel Reflection

⇨ Named after French physicist Augustin-Jean 
Fresnel

­ It's French... It's pronounced fray-NELL

⇨ Light moves at different speeds through different 
materials

­ The ratio of the speed of light in a vacuum to the 
speed in a particular material is the refractive index of 
that material

­ Glass has an index of refraction of ~1.5
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Fresnel Reflection

⇨ When light passes between material with differ-
ing indicies of refraction:

­ The light changes velocity
­ Speed changes
­ Direction changes
­ Wave theory of light: the change in speed causes the change 

in direction

­ Some of the light is reflected
­ The remaining light is refracted

­ This light passes into the material
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Wave Theory – Refraction

⇨ When light leaves one material and enters 
another, it changes direction

­ At the interface the speed changes, and the light 
bends

N

L

R

Q

Air Water
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Wave Theory – Refraction

Image from http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg

http://en.wikipedia.org/wiki/File:Refraction-with-soda-straw.jpg
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Reflection vs. Refraction

⇨ Ratio of reflection to refraction depends on the 
angle between the light and the normal at the 
interface

­ The larger the angle between the normal and the light, 
the more light is reflected

­ The effect is like a rock skipping on water
­ The greater the angle between the rock's velocity and the 

water's surface normal, the more skipping
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Reflection Math

⇨ The amount of reflection R() is:

­ n
i
 is the refractive index of the first material

­ n
t
 is the refractive index of the second material

­  is the angle between the surface normal and the 
light vector

c=ni /nt cos

g=1c2−ni /nt 
2

R =
1
2  g−cgc 

2

1 c gc−ni /nt
2

c g−cni /nt
2 
2


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Reflection Math

⇨ Yewouch!  That math is complex and expensive
⇨ A good approximation exists:

­ R(0) is calculated in the application and passed into 
the shader as a uniform

Ra =R 01−R 0 1−cos 
5
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Fresnel Reflection in Lighting

⇨ Simulate a diffuse surface with a shinny coating:

­ The Fresnel term determines what part of the light is 
reflected by the specular coating 

­ The light that isn't reflected by the specular coating is 
reflected by the diffuse layer

K=1−F KdF K s
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Fresnel Reflection and Materials

⇨ Dielectric materials exhibit a strong Fresnel 
factor

­ Dielectric means that it does not conduct electricity
­ Plastic, glass, automotive paint, etc. are dielectic and 

have strong Fresnel factors
­ Metal is a conductor and has almost no Fresnel factor

­ This fact will be very important later...
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Reading for Next Week
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Next week...

⇨ Quiz #1
⇨ Assignment #1 due
⇨ BRDFs, part 1
­ Common ideas and terminology
­ Cook-Torrance BRDF
­ Micro-facet based BRDFs
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